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ABSTRACT: In the Born−Oppenheimer approximation, the
electronic wave function is typically real-valued and hence the
electronic flux density (current density) seems to vanish. This is
unfortunate for chemistry, because it precludes the possibility to
monitor the electronic motion associated with the nuclear
motion during chemical rearrangements from a Born−
Oppenheimer simulation of the process. We study an electronic
flux density obtained from a correction to the electronic wave
function. This correction is derived via nuclear velocity
perturbation theory applied in the framework of the exact
factorization of electrons and nuclei. To compute the correction,
only the ground state potential energy surface and the electronic
wave function are needed. For a model system, we demonstrate that this electronic flux density approximates the true one very
well, for coherent tunneling dynamics as well as for over-the-barrier scattering, and already for mass ratios between electrons and
nuclei that are much larger than the true mass ratios.

■ INTRODUCTION

In the Born−Oppenheimer (BO) approximation,1 the electrons
are assumed to be fast enough (or the nuclei slow enough) so
that from their perspective, the nuclei can be considered as
frozen. Hence, the total wave function Ψ(R,r,t) of a molecule is
written as

χΨ ≈ Φ |t tR r R r R( , , ) ( , ) ( )BO BO
(1)

i.e., as a product of a time-dependent nuclear wave function
χBO(R,t) and a stationary electronic wave function Φ(r|R),
which depends on the electronic coordinates r and parametri-
cally on the nuclear positions R, but not on the time t. In a
time-dependent situation, this view has interesting consequen-
ces for the internal motion of the molecule: Because the
electronic wave function depends only on the position but not
on the velocity of the nuclei, information about the electronic
motion is missing. Although the time-dependent electron
density

∫ρ χ= | | |Φ | |t tr R r R R( , ) ( , ) ( ) dBO BO 2 BO 2
(2)

that in the BO picture is induced by the motion of the nuclei is
a very good approximation to the exact one, the electronic flux
density (also called electronic current density) computed from
the standard expression in general gives2,3

=tj r( , ) 0BO
(3)

We refer here to the time-dependent density and flux density
after separation of translational and approximate separation of
rotational degrees of freedom of the system, and we do not

consider currents induced by external fields or related to
nonzero electronic angular momenta.
That the electronic flux density is zero for the BO wave

function is unfortunate, especially for chemistry. Typically,
chemists like to think in terms of reaction mechanisms; i.e.,
they want to know how the electrons move during the course
of a reaction. For this purpose, the electronic flux density is
necessary because it shows the direction of the electronic
motion. In a semiclassical study of proton transfer in
formamide, for example, the electronic flux density revealed
the mechanism and showed that the electrons move in the
opposite direction to the motion of the proton.4 Additionally,
time-dependent extensions for the concept of a chemical bond
may also need the electronic flux density: For example, the
electron localization function is based on the static BO
electronic wave function,5 but the definition of the time-
dependent electron localization function contains the electronic
flux density.
Another problem where the electronic flux density is

(implicitly) needed is for vibrational circular dichroism, a
spectroscopic technique that relies on the interaction of chiral
media with circularly polarized light.6 To predict the spectrum,
it is necessary to compute the magnetic transition dipole
moments, which are zero in the BO treatment for the same
reason as the electronic flux density. Thus, a correction to the
electronic BO wave function that yields the correct vibrational
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circular dichroism spectrum also yields the correct electronic
flux density.
Several approaches to remedy this problem were put forward.

A first approach was the time-shift flux.7 In essence, it proposes
to compute a flux density from the wave function at time t and
time t + Δt, to obtain information about the electronic motion.
In the same spirit, the Born−Oppenheimer broken symmetry
ansatz8 suggests using the wave function at nuclear
configurations R and R + ΔR. This ansatz seems promising
to represent the qualitative features of the electronic flux
density in a computationally inexpensive way. Another
approach is the coupled-channels theory9−12 that uses the
atomic basis sets employed in computing the electronic wave
function to suggest an electronic flux density. However, the
applicability of the coupled-channels theory is restricted, which
resulted in the development of a quasi-classical approach13 and
a “non-BO approximation”,14 where the latter has some
similarities to our approach. We comment on the these
below. As an alternative to the flux density, one may use the
electronic flux defined relative to a certain volume in the
electronic configuration space to investigate chemical reac-
tions,15−17 albeit this approach has limitations in the absence of
a useful spatial symmetry.18

In this article, we investigate an electronic flux density that is
obtained from a correction to the electronic wave function.
This correction is the result of nuclear velocity perturbation
theory (NVPT)19 and was recently derived20 from the exact
factorization of electrons and nuclei.21,22 A related approach for
classical nuclei was proposed by Nafie23 as the “complete
adiabatic wavefunction” and recently implemented for the
problem of the electronic flux density24 and for the problem of
vibrational circular dichroism.25 The derivation from the exact
factorization is the quantum-mechanical generalization of this
approach. It also shows why the NVPT electronic flux density is
useful in the BO approximation: From the exact factorization
follows that it originates from a first-order correction in the
same parameter that also determines the validity of the BO
approximation. The parameter can be interpreted classically as
the nuclear velocity but has a more general meaning when
analyzed in the framework of the exact factorization.20 Hence,
the NVPT electronic flux density is expected to be a good
approximation to the true electronic flux density whenever the
BO dynamics is a good approximation to the true molecular
dynamics. Additionally, the correction of the electronic wave
function does (to first order) neither alter the potential energy
surface that determines the dynamics of the nuclei nor are
excited BO electronic states necessary for its computation
(albeit they can be used, as shown below).
So far no systematic study on the quality of the NVPT

correction to the electronic flux density has been performed. In
this article, we provide such a study based on the analysis of a
model system. Exact solutions for molecular systems are
difficult to compute because of the large number of particles
involved and because of the different masses of electrons and
nuclei that require different time scales for the simulation. We
simulate the coupled dynamics of a heavy particle and an
electron tunneling through or scattering from a barrier, and we
investigate the quality of the electronic flux density for different
values of the ratio between the mass of the electron and of the
heavy particle. Additionally, we compare two ways to compute
the NVPT correction: One possibility is to use the electronic
ground-state wave function and potential energy surface. It is
then necessary to solve a system of equations that involves the

derivative of the electronic wave function with respect to the
nuclear coordinates. Another possibility is to use an expansion
in excited states. We examine the convergence with the number
of included excited states in this expansion to determine
whether only a small number of states can already yield a
qualitatively correct electronic flux density. For the study of
reaction mechanisms in complicated systems, a qualitative
picture can already be enough to understand the process and
develop or test general concepts.

■ THE ELECTRONIC FLUX DENSITY IN THE
BORN−OPPENHEIMER APPROXIMATION

In what follows, we assume that after separation of the center of
mass and approximate separation of the rotational degrees of
freedom of the total molecule, the wave function can be written
as an approximate product of three terms, corresponding to the
linear, rotational, and internal motion of the molecule. Next, we
assume that the linear and rotational part correspond to narrow
distributions. Thus, we say that our molecule has a well-defined
location and orientation in space, to avoid a constant or
rotationally symmetric electron density. We neglect the ensuing
problem of the coupling of internal motions to the rotation of
the system26 based on the assumption that the dynamics of
interest is faster than the effect of the coupling. The exact
approach to define internal coordinates of the nuclei and the
electronic coordinates relative to the molecular center of mass,
and to transform the total Hamiltonian accordingly, will not be
pursued here because of its many complications.27 Clearly, the
proper inclusion of the coupling between rotations and
vibrations deserves further attention.
For a molecular system, coupled motion of electrons and

nuclei is described by the time-dependent Schrödinger equation

ℏ∂ Ψ = + Ψt T H tR r R ri ( , , ) ( ) ( , , )t n BO (4)

where Tn is the nuclear kinetic energy and HBO is the BO
Hamiltonian containing the electronic kinetic energy and all
Coulomb interactions. The system is composed of Nn nuclei
with masses Mν and coordinates Rν, and Ne electrons with
coordinates rj. We will work with the electronic Ne-particle
density (normalized to one) and the electronic Ne-particle flux
density, which will in the following be simply called electron
density and electron flux density. The more practical one-
electron density and one-electron flux density can be obtained
by integrating over all but one electronic coordinate in the
relevant equations. We need the spatial derivatives for each
nucleus ν, denoted with ∇ν, and with respect to all electronic
coordinates, denoted with ∂r. The electron density is

∫ρ = |Ψ |t tr R r R( , ) ( , , ) d2
(5)

From the Schrödinger equation and the continuity equation for
the density |Ψ|2 it follows that the electronic flux density is
given by

∫= ℏ ℑ Ψ*∂ Ψt
m

j r R( , ) ( ) dr
e (6)

In the BO approximation, the molecular wave function is
written as

χΨ = Φ |t tR r R r R( , , ) ( , ) ( )BO
0
BO

(7)

where Φ0 is the lowest energy solutiona of
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Φ | = ϵ Φ |H R r R R r R( ) ( ) ( ) ( )j j jBO
BO BO BO

(8)

and, instead of (4), the time evolution of the nuclear wave
function is described by

χ χℏ∂ = + ϵt T tR R Ri ( , ) ( ( )) ( , )t j
BO

n
BO BO

(9)

Using the Born−Oppenheimer ansatz (7) in the definition of
the electron density (5) yields

∫ρ χ= | Φ | |t tr R r R R( , ) ( , ) ( ) dBO BO
0
BO 2

(10)

which was found to be a very good approximation to the true
electron density.2 In contrast, inserting (7) into the definition
of the electronic flux density (6) yields

=tj r( , ) 0BO
(11)

if the electronic ground state Φ0 is nondegenerate.
2 Obviously,

because the density ρBO changes in time, the flux density jBO

cannot be the corresponding flux density, as it yields zero flux
everywhere. In the following, we correct the electronic wave
function by perturbation theory to obtain a nonzero electronic
flux density that is a good approximation to the true one
whenever the BO approximation is valid for the dynamics of
the system. The exact factorization is used to identify the
proper perturbation parameter.

■ EXACT FACTORIZATION OF THE
ELECTRON−NUCLEAR WAVE FUNCTION

In the exact factorization, the molecular wave function is
written as

χΨ = Φ |t t tR r R r R( , , ) ( , ) ( , ) (12)

with partial normalization condition ⟨Φ|Φ⟩r = 1 ∀R, t, with
⟨...⟩r indicating integration over the electronic coordinates. In
contrast to (7), the decomposition into a marginal nuclear wave
function χ and a conditional electronic wave function Φ does
not involve an approximation. The theory and interpretation of
the exact factorization have been extensively presented
elsewhere.21,22,28−45 Therefore, we recall here only the basic
ideas and we focus on a discussion of the approximations
employed in the following analysis.
Using the exact factorization ansatz (12) together with the

time-dependent Schrödinger equation (4) yields two coupled
evolution equations for the two components of the full wave
function,

χ+ Φ − ϵ Φ | = ℏ∂ Φ |H U t t tR r R r R( [ , ] ( , )) ( , ) i ( , )tBO (13)

∑ χ χ
− ℏ∇ +

+ ϵ = ℏ∂
ν

ν ν

ν=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t
M

t t t
A R

R R R
[ i ( , )]

2
( , ) ( , ) i ( , )

N

t
1

2n

(14)

Note that |χ|2 is the exact nuclear many-body density and χ
together with Aν also yield the exact nuclear flux density. The
electron−nuclear coupling operator

∑χ

χ
χ

Φ =
− ℏ∇ −

+
− ℏ∇

+ · − ℏ∇ −

ν ν

ν ν

ν
ν ν ν

=

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

U
M

A

A A

[ , ]
1 [ i ]

2

i
( i )

N

1

2n

(15)

is the source of the nonadiabatic coupling to the nuclei.
Similarly, the time-dependent vector potential (TDVP) and
time-dependent potential energy surface (TDPES), defined as

= ⟨Φ| − ℏ∇ Φ⟩ν νtA R( , ) i r (16)

ϵ = ⟨Φ| + − ℏ∂ |Φ⟩t H UR( , ) i t rBO (17)

respectively, induce the coupling to the electrons in the nuclear
evolution eq 14. There is a gauge freedom in the exact
factorization, because for some function S(R,t) the wave
functions χ ̃ = e−iSχ and Φ̃ = eiSΦ leave the full wave function
(12) and the equations of motion invariant, if the scalar and
vector potentials satisfy the gauge transformation

̃ = + ∇ν ν νA SA (18)

ϵ̃ = ϵ + ∂ St (19)

It is evident that if the coupling U is zero and the initial
electronic state is chosen to be an eigenstate Φj

BO of HBO (8),
the electronic equation (13) reproduces the evolution of a
stationary state. Therefore, if the ground state Φ0

BO is
considered, the BO approximation is recovered, i.e., the
potential obtained from the (13) and used in the nuclear
equation (14) is the ground state potential ϵ0

BO.

■ CORRECTIONS TO THE BORN−OPPENHEIMER
ELECTRONIC WAVE FUNCTION FROM NUCLEAR
VELOCITY PERTURBATION THEORY

To make progress regarding the electronic flux density, we
neglect those parts of U that do not directly couple to the
nuclear wave function, i.e., the first term in (15).46 We do this
because U has a factor 1/Mν that is typically a very small
number, and for the first term in (15) this factor cannot be
compensated by features of the nuclear wave function. Then,
the electron−nuclear coupling operator (15) becomes

∑ λχΦ ≃ · − ℏ∇ −
ν

ν ν ν
=

U A[ , ] ( i )
N

R
1

n

(20)

with the velocity field

λ
χ

χ
=

− ℏ∇
+ν

ν

ν
ν

⎛
⎝⎜

⎞
⎠⎟t

M
R A( , )

1 i

(21)

In this approximation, the coupling operator U does not
contribute to the exact potential ϵ, as the expectation value of
(20) with respect to the electronic wave function Φ is zero.
The field λν will be used below as expansion parameter,

because it represents the coupling of the nuclear wave function
to the electronic wave function. It should be noted that only the
real part of λν is the velocity field of the nuclei, which is given
by the nuclear flux density

χ χ χ= ℏ *∇ + | |ν
ν

ν νt
M

J R A( , )
1

( Im( ) )2

(22)

divided by the nuclear density ρ(R,t) = |χ|2. Additionally, there
is an imaginary part that depends on the gradient of the density.
Specifically,

λ
ρ

ρ
ρ

= + ℏ ∇
ν

ν

ν

νt
M

R
J

( , )
2i (23)

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b12657
J. Phys. Chem. A 2016, 120, 3316−3325

3318

http://dx.doi.org/10.1021/acs.jpca.5b12657


Hence, for λν to be small, both the velocity field of the nuclei
and the variation of the nuclear density in space have to be
small.
We have previously33,34 argued that in the classical limit47 of

the nuclear wave function, λν can be approximated as the
classical nuclear velocity, λν(R,t) ≃ Ṙν(t), and this observation
was the starting point20 for the introduction of the NVPT19 in
the framework of the exact factorization. The basic idea can be
summarized in the following way: (i) if λν = 0, the BO limit is
recovered, as described above; (ii) if λν ≫ 0, the dynamics is
nonadiabatic, and the effect of the nuclei is fully accounted for
by the coupling operator U of (20); (iii) if λν is small,
nonadiabatic effects can be taken into account as a perturbation
to the BO limit. When the adiabatic approximation is invoked,
the electronic problem is solved at fixed nuclear position,
meaning that the velocity of the nuclei (the classical limit of λν)
is zero. If the velocity is small, or similarly if λν is small, we can
expect a small deviation from the adiabatic behavior, which can
be treated perturbatively.
We want to point out that the correction for classical nuclei

was previously also found by Nafie23 and, later, by
Patchkovskii.24 Compared to their approaches, our derivation
from the exact factorization has two advantages: As our result is
derived for quantum-mechanical nuclei, it is possible to obtain
corrections to the classical limit that include quantum effects.
Additionally, the expansion parameter appears naturally when
the BO equations are compared with the equations of the exact
factorization. From this comparison, it is evident that the
expansion parameter has to be small both for the BO
approximation to hold and for the NVPT correction to be
applicable. Thus, the derivation shows that the NVPT
correction is appropriate whenever the BO approximation is
appropriate, for quantum and for classical nuclei.
Henceforth, we will work in a gauge where the exact TDVP

Aν(R,t) = 0. This choice of gauge is not possible if ∇ν × Aν ≠ 0,
and Berry phase effects may be important.37,48 Then, the
analysis presented below might have to be extended.
We consider the electronic equation (13) with approximate

electron−nuclear coupling (20),

∑ λ+ · − ℏ∇ Φ | = ϵ Φ |
ν

ν ν
=

H t t t tR r R R r R[ ( , ) ( i )] ( , ) ( , ) ( , )
N

BO
1

n

(24)

and solve it within perturbation theory. We did not use new
symbols in (24), but it should be kept in mind that we are not
using the full coupling operator; hence, the electronic wave
function Φ and in consequence also the TDPES ϵ are only
(typically very good) approximations to the exact quantities.
Note that in writing (24), we discard the time-derivative of the
electronic wave function that occurs in (13). In doing this, we
adopt the hypothesis that the electronic wave function is almost
a static state of the BO electronic wave function.19,20 We set

∑ λ λΦΦ | = Φ + · +
ν

ν ν ν
=

tr R( , ) i ( )
N

(0)

1

(1) 2
n

(25)

To zeroth order in λν,

Φ = ϵ ΦHBO
(0) (0) (0)

(26)

hence, ϵ(0) = ϵ0
BO(R) and Φ(0) = Φ0

BO(r|R) are the time-
independent BO ground-state potential and eigenfunction. To
first order in λν, we find

Φ− ϵ | = ℏ∇ Φν νH r R( ) ( )BO 0
BO (1)

0
BO

(27)

The first-order correction to the BO ground-state wave
function is straightforward to calculate from this expression,
because only the ground-state wave function and the ground-
state potential are needed.
Some observations need to be made: The TDPES is not

affected by the perturbation at first order, i.e., ϵ(R,t) = ϵ0
BO(R)

+ λν( )2 . Also, although within the BO picture we work in a
gauge where the exact TDVP Aν = 0, there is a nonzero
contribution of the TDVP to first order in λν. To be fully
consistent, we would have to include this correction in the
determination of the nuclear dynamics in (9). Instead, we
neglect this contribution and use the BO nuclear wave function
determined with zero vector potential, as is typically done in
practice.
Next, we expand Φν

(1) in terms of excited BO electronic
states, so that (25) becomes

∑ ∑λ λ

Φ |

= Φ + ℏ ·
ϵ − ϵ

Φ +
ν

ν
ν

ν
= >

tr R
d

( , )

i ( )
N

j

j

j
j

(0)

1 0

0,
BO

0
BO

BO 2
n

(28)

where

= ⟨Φ |∇ Φ ⟩ν νd R R R( ) ( ) ( )j j r0,
BO

0
BO

(29)

is the nonadiabatic coupling vector corresponding to νth
nucleus between the BO states j and 0. We emphasize that our
approach aims at obtaining the electronic flux density in
situations where the BO approximation is a good description of
the dynamics. In the vicinity of a conical intersection (28)
diverges. Clearly, this case is excluded by the assumptions.
Thus, we have determined two ways to compute the

correction Φν
(1) to the BO electronic wave function: We solve

(27), e.g., by determining the gradient of Φ0
BO at each

configuration R, and then solve the matrix equation with the
ground state potential at those positions. Alternatively, if
excited states are available, we directly calculate the correction
from (28). This approach may be computationally preferred if
the convergence with respect to the number of included excited
states is sufficiently good and only a qualitative picture of the
electronic flux density is of interest.
Finally, from the correction to the electronic wave function

follows that the NVPT electronic flux density to first order in λν
is given by

∫= ℏ Φ ∂ Φ̃ − Φ̃ ∂ Φt
m

j r R( , ) ( ) dr r
NVPT

e
0
BO (1) (1)

0
BO

(30)

with

∑ ΦΦ̃ = · |
ν

ν ν
=

t tR r J R r R( , , ) ( , ) ( )
N

(1)

1

(1)
n

(31)

Below, we will test the convergence of the electronic flux
density with respect to the number of included excited states to
see which way to compute the correction may be more efficient.
In summary, we represent the molecular wave function by

the exact factorization ansatz and apply perturbation theory to
the electronic part only, with the approximate electron−nuclear
coupling operator (20) as perturbation. An alternative approach
is presented by Diestler14 who expands the molecular wave
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function in terms of BO states and uses the nuclear kinetic
energy operator as perturbation. Then, an “average excitation
energy” approximation is used to find an equation for the
molecular wave function (eq 5.18 in ref 14) and an equation for
the electronic flux density (eq 7.5 in ref 14) that are similar to
our results (28) and (30), respectively. The main difference for
the flux density is that we obtain our correction to the
electronic wave function from (27) whereas the effect of the
“average excitation energy” approximation is to replace the
operator HBO − ϵ0

BO by an energy ΔE.

■ A MODEL STUDY
We work with atomic units; i.e., energy is given in Hartree (Eh),
length is given in Bohr (a0), mass is given in electron mass
(me), and action is given in Planck’s constant ℏ.
In this section, we want to systematically study the NVPT

electronic flux density (30) with NVPT electronic wave
function obtained either from (27), where only the electronic
ground state potential and wave function are needed, or from
the expansion in terms of excited electronic states (28). In
actual calculations, the sum over excited states has to be
truncated. Therefore, we investigate (i) how many excited
states are needed in the expansion (28) until a reasonable flux
density is obtained, (ii) how well (27) approximates the exact
electronic flux density, because it contains the contributions
from all excited states up to first order in the expansion
parameter λν but requires only knowledge of the ground state
electronic wave function and potential energy surface, and (iii)
how sensitive the electronic flux density is to the mass ratio
between electron and heavy particle. We will also compare to
the classical situation, i.e., reducing the nuclear wave function to
a position and a velocity.
For this purpose, we construct a model that includes both

nuclear and electron dynamics and can be solved numerically
exactly. Our system is composed of two particles in two
dimensions (X, Y): One positively charged heavy particle of
mass M, hereafter called nucleus, with coordinates (R, 0) that is
only allowed to move in X-direction, and one negatively
charged particle of mass m = 1 me with coordinates (x, y) that is
allowed to move in the whole plane. The interaction is modeled
with Coulomb potentials including softening parameters. In
addition, there is a very heavy nucleus clamped at the origin,
whose Coulomb potential acts as a barrier at (0, 0) for the
movable nucleus. The motion of the latter is in addition
confined by a quartic well. Thus, the potential is given by

α β

α

= −
+ +

+ +
+

−
− + +

⎛
⎝⎜

⎞
⎠⎟V

x y

R
R R

R x y

1 1

1

( )

2 2
2 0

4

2

2 2
1 (32)

We chose the parameters α1 = 0.5 a0
2, α2 = β = 4 a0

2, and R0 =
12 a0. With these parameters, the potential V(R,x,y) has two
equivalent minima and can be used to describe both coherent
tunneling dynamics as well as scattering at a barrier.
It is quite clear that our model potential describes the

essentials of coupled electron−proton transfer,49 especially if
we allow for more flexibility in the function describing the
barrier. Also, it can be used as a model for hydrogen entering a
metal.50 For the purpose of the present article, however, it
suffices as a model of a generic situation that is described
typically in the BO approximation. To challenge the BO

approximation, we use small masses for the nucleus, between
10 me and 50 me. A side effect of this choice is that any mass-
dependent effect is much more sensitive to a variation of the
mass than if we would use masses of real nuclei.
We use a grid with R ∈ [−15, +15] a0, x ∈ [−20, +20] a0,

and y ∈ [−10, +10] a0, with nR = 301, nx = 101, and ny = 51
points, respectively. For eigenvalue problems, a finite difference
approximation for the derivatives is used. The time-dependent
propagation was obtained numerically by using the action of
the time propagator on the wave function. In both cases, the
SciPy sparse linear algebra package51 was used, which employs
the ARPACK software52 for the solution of the eigenvalue
problem and the method of refs 53 and 54 for computing the
action of a matrix exponential on a matrix.

Tunneling Regime. The potential V has two equivalent
minima along R, relative to the barrier at R = 0. We call the
minimum at R > 0 the right minimum and the minimum at R <
0 the left minimum, respectively. The two minima give rise to
tunneling doublets, i.e., pairs of almost degenerate states. For
example, for M = 50 me we find that the lowest two states differ
in energy only by ΔE01 = E1 − E0 = 2.6 × 10−6Eh, whereas the
difference between these states and the next set of almost
degenerate states is ΔE12 = 0.02Eh. The tunneling time is
defined as

τ =
Δ

h
E01 (33)

As a first test, we investigate the coherent tunneling dynamics,
i.e., the dynamics of a tunneling doublet without dissipation.
Our initial state is a superposition of the lowest two

eigenstates of the full Hamiltonian, ψ0 and ψ1, with phases
defined such that the wave function is localized at the right
minimum. The time-dependent wave function is thus given by

ψ ψ ψ= +− −R x y t R x y R x y( , , , )
1
2

( ( , , )e ( , , )e )E t E t
0

i
1

i0 1

(34)

with the respective eigenvalues E0 and E1. By solving the
electronic problem at each nuclear configuration, we obtain the
Born−Oppenheimer potentials ϵj

BO(R) and electronic states
ϕj
BO(x,y|R). The lowest potential energy surfaces are shown in

Figure 1 together with the initial wave function. The ground
state is a double-well potential that is energetically separated
from the excited states. Its lowest two vibrational states are used
to construct the time-dependent Born−Oppenheimer nuclear
wave function as

χ χ χ= +− −R t R R( , )
1
2

( ( )e ( )e )E t E tBO
0,0
BO i

0,1
BO i0,0

BO
0,1
BO

(35)

where E0,0
BO and E0,1

BO are the respective eigenenergies. Although
for the mass ratios that we use there is a small difference
between exact and Born−Oppenheimer eigenvalues, this
difference only changes the tunneling time but does not
influence the tunneling dynamics in any other way. Hence, it
will not be noticeable below, because we will always consider
the time in units of the tunneling time for both the exact and
the Born−Oppenheimer dynamics.
First, we analyze the expansion parameter λ(R,t), (21) and

(23), shown in Figure 2. The real part of λ corresponds to the
velocity field and shows the typical behavior that occurs in
coherent tunneling in a symmetric double-well potential: The
velocity is everywhere almost zero except under the barrier,
where it can have large values.55 The imaginary part of λ, which
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is basically the gradient of the density divided by the density,
has nonzero (albeit small) values both in the region of the
barrier and away from the minimum. Thus, λ is close to zero in
the relevant region around the minima, where the wave
function is always localized during coherent tunneling.
After one-quarter of the tunneling time, the density is

localized equally in both potential wells. Figure 3 shows the
nuclear density and flux density, as well as the electron density
and flux density, at that time. The dynamics started in the right
potential well; hence, the nuclear flux density is negative,
representing a motion to the left. The electron density is also
equally distributed between the two wells. The electronic flux
density has characteristics similar to those of the nuclear one: It
is strongest in the region of the barrier, and it is directed to the
left well.

In Figure 3, next to the exact electronic density and flux
density, also the NVPT density and flux density are shown for
λBO and assuming classical nuclei at the expectation value of
position and momentum. We will now discuss how these
compare to the exact quantities.
The NVPT correction Φ(1) was obtained from (27) with the

ground state BO surface and BO electronic wave function. Also,
λBO is λ defined in (21) but evaluated by using the BO nuclear
wave function χBO instead of the exact one, as λBO is the one
that is available in practice.
From the figure, it is clear that exact and NVPT electronic

density and flux density are in almost perfect agreement. To
assess the quality of the NVPT flux density, we define an error
measure

∑=
−

| | > | |E t
n

j j

j
j j( )

1
for 0.1 maxx

x k

x k x k

x k

, ,
NVPT

,

(36)

where jx,k = [j(xk)]x is the x-component of the flux density,
evaluated at grid point xk. The error measure has the meaning
of an average relative error. To exclude the large relative errors
at small magnitudes |j| of the flux density, we restrict the set of
points xk to the points where |j(xk)| is at least 10% of the
maximum magnitude at the given time. We also only consider
the x-direction, because the flux in the y-direction is very small
for the considered dynamics. Additionally, to single out the
error of NVPT as compared to the error of the dynamics
introduced by the BO approximation, we compute the NVPT
flux density with the parameter λ computed from the exact
wave function.
Figure 4 shows the errors of the electronic flux density with

respect to the number of excited states used in (28), and the
error if the correction is obtained directly from (27). The error
was computed for different masses of the heavy particle. The
errors for coherent tunneling do not depend on time (except if
the flux density becomes very small, for numerical reasons).
It can be seen that, except for mass M = 10 me, the errors for

different nuclear masses are very similar. There are steps in the

Figure 1. Lowest 20 Born−Oppenheimer potential energy surfaces
and initial Born−Oppenheimer wave function for the tunneling
dynamics (superposition of the lowest two eigenstates of the ground
state potential), for a nucleus with mass 50 me. For the over-the-barrier
dynamics, this state was shifted by 4.5 a0 to the right.

Figure 2. Real (left) and imaginary (right) part of the expansion parameter λ for the tunneling dynamics, for a nucleus with mass 50 me.
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convergence with respect to the number of excited states. The
steps can be explained with the nonadiabatic coupling vectors
dj0. By the symmetry of our system, we can expect that every
second of these coupling vectors is zero. However, there are
avoided crossings in the excited states so that the character of
the state changes along the nuclear coordinate, and hence some

of the coupling vectors are zero for some regions along R.
Specifically, the coupling to the first excited state d10 is nowhere
zero; hence, inclusion of this contribution to the electronic
wave function is significant. In contrast, d20 is zero in the region
|R| < 7.7 a0. At R = 7.7 a0 there is an avoided crossing in the BO
surfaces and for |R| > 7.7 a0 the coupling d20 is not zero, but it is
also not relevant for the dynamics. Hence, there is almost no
contribution of the second excited state to the flux density and
the error does not decrease. For higher excited states the
situation is similar but more complicated due to the presence of
further avoided crossings. Otherwise, we find that already
inclusion of only the first excited state yields a flux density that
can be used for qualitative analysis. The flux density obtained
from solving (27), which formally includes all excited states,
shows that the error made by including only first-order terms in
the expansion coefficient λ is negligible for any but the most
accurate simulations.
Additionally, in ab-inito molecular dynamics simulations the

nuclei are treated (semi-)classically and hence, instead of a
nuclear wave function, only a nuclear position and velocity is
available. To study the electronic flux density in this case, too,
we define a classical wave function

Ψ

= Φ |⟨ ⟩ +
⟨− ℏ∂ ⟩

Φ |⟨ ⟩

x y t

x y R t
t

M
x y R t

( , , )

( , ( ))
i ( )

( , ( ))R

cl

(0) (1)

(37)

where ⟨R⟩(t) and ⟨−iℏ∂R⟩(t) are the time-dependent nuclear
position and momentum expectation values, respectively.
Figure 3 shows that the classical NVPT electronic flux density
is too localized and has too large a magnitude as compared to

Figure 3. Top: nuclear density (left) and flux density (right) for the exact nuclear wave function χ and for the Born−Oppenheimer (BO) nuclear
wave function χBO, after one-quarter of the tunneling time, for a nucleus with mass 50 me. Below: electron density (top) and flux density (below, with
contours indicating the magnitude and arrows indicating the direction, for points where the flux is more than 1% of its maximum value) at that time
for the exact wave function (left), for the BO electronic wave function corrected by nuclear velocity perturbation theory (NVPT, center), and for the
NVPT electronic wave function at the expectation value of nuclear position and momentum (right).

Figure 4. Average relative error of the x-component of the electronic
flux density obtained from nuclear velocity perturbation theory during
coherent tunneling for several masses of the nucleus. The number of
states indicates how many states were taken into account for
computing the correction according to (28), and ∞ means
computation of the correction according to (27). The errors do not
change with time.
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the exact one. As the preceding discussion shows, this is not the
failure of the NVPT, but rather of replacing the density that is
localized at the two potential wells by a density at the position
expectation value.
Over-the-Barrier Dynamics. As a second example, we

consider the scattering of a wavepacket at the barrier. Our
initial state is the same wave function as for the tunneling case,
i.e., a superposition of ground and first excited state of the full
system. This time, however, we shift the state by 4.5 a0 in the R-
direction, so that it is initially localized around R = 7.7 a0. A
classical nucleus localized at this position has enough energy to
overcome the barrier, as can be seen from Figure 1. The nuclear
wavepacket dynamics shows initially a motion to the left. When
the wavepacket hits the barrier, it is backscattered by a small
amount but mostly continuing to the left, where it scatters an
the left potential wall and is reflected.
We consider a nucleus of mass 50 me and a time t right after

the dominant part of the wavepacket had hit the left potential
wall and returns to the right. Figure 5 shows the densities and
flux densities at that time.
From the nuclear density and flux density we see that the

main part of the wavepacket is left of R = 0 and its motion is
directed to the right. There is also a small part around R = 5 a0
that is also directed to the right. This part has previously been
backscattered at the barrier. The same behavior is found for the
electrons, albeit from the figure of the exact electron density
this is not apparent. However, for the exact electronic flux
density we plotted the directional arrows for all points where
the magnitude of the flux density is larger than 1% of the
maximum magnitude. The arrows around x = 4 a0 show the
backscattering also in the electronic part.
The NVPT electronic density and flux density show almost

quantitative agreement also for this dynamics. We again

analyzed the errors, but not with respect to a change in mass
but only during the time evolution.
Figure 6 shows the results. In contrast to the coherent

tunneling dynamics, the errors of the over-the-barrier dynamics
change with time. We see nevertheless a similar behavior of the
error with respect to the number of included excited states like
in the tunneling case. However, for inclusion of the lowest few
excited states the error varies with time significantly: At certain

Figure 5. Like Figure 3, but for the over-the-barrier dynamics. The initial state corresponds to the nuclear wavepacket of Figure 1, shifted by 4.5 a0 to
the right. It moves to the left potential well, hits the potential wall, and is backscattered. The figure shows the quantities at a time shortly after the
backscattering.

Figure 6. Like Figure 4, but for the over-the-barrier dynamics and only
for a nucleus with mass 50 me. The error is shown at several different
times during which the wavepacket moves from its initial position in
the right potential well to the left well and is backscattered. The last
time corresponds to the situation of Figure 5. All times are given in ℏ/
Eh.
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times, inclusion of only the first excited state in the
determination of the electronic flux density seems to be
enough, with only little improvement from further states.
However, for most time steps, at least the lowest three states
need to be taken into account for a quantitatively correct flux
density. The error of the limiting case of formally including all
excited state also varies with time and can be up to 5%. Thus,
also the quality of the flux density including only first-order
terms of λ varies slightly.
Lastly, we find that the classical flux density shows the correct

qualitative behavior, although too localized and with a slightly
too high magnitude. The localization is a result of replacing the
true electron density by the density corresponding to the
position expectation value. Nevertheless, if the nuclear
wavepacket is adequately represented by its expectation values,
and if the BO approximation is valid, the NVPT electronic flux
density can be expected to give a qualitatively correct picture.

■ CONCLUSIONS

In this article, we showed that the electronic flux density
obtained from NVPT is adequate for BO dynamics. Seen from
the exact factorization, it can be derived from a perturbation
expansion in the same parameter that also has to be small for
the BO approximation to hold. For a model system involving a
nucleus and an electron in an external potential, we find that
the NVPT electronic flux density yields quantitative results if
the correction is determined by solving a system of equations
that only involves the ground electronic potential and wave
function. Alternatively, if information about electronically
excited states is available, the information can also be used to
obtain an estimate of the electronic flux density. This may be a
valuable alternative when only the qualitative reaction
mechanism of a chemical rearrangement is of interest.
Whenever a classical description of nuclei represents the
nuclear dynamics well, the NVPT flux density using only the
classical velocity also represents the exact one well. Finally, it
can be used to include nuclear quantum effects in the electronic
flux density.
Computation of the NVPT electronic flux density from the

ground state properties is computationally not prohibitive for
molecules. However, although for the case of classical nuclei the
correction was known in the theory of vibrational circular
dichroism for some time,23 it was implemented only recently
for a plane-wave basis set19 and has not yet been implemented
in an atom-centered basis set because the implementation has
many caveats.6 As the electronic flux density is a very useful
quantity and the NVPT correction is a good way to obtain it for
the dynamics of molecules, we hope to stimulate further
research for its practical implementation.
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