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Two years after the prediction of a giant spin Hall effect for the dilute Cu(Bi) alloy [Gradhand et al., Phys. Rev.
B 81, 245109 (2010)], a comparably strong effect was measured in thin films of Cu(Bi) alloys by Niimi et al.
[Phys. Rev. Lett. 109, 156602 (2012)]. Both theory and experiment consider the skew-scattering mechanism to
be responsible, however they obtain opposite sign for the spin Hall angle. Based on a detailed analysis of the
obtained theoretical results, we propose that either the formation of extremely small clusters or the influence of
interface roughness and grain boundaries decorated with Bi atoms are responsible for the observed phenomenon.
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I. INTRODUCTION

One of the most interesting phenomena related to the
field of spintronics is the spin Hall effect (SHE).1,2 It
provides the opportunity to create spin currents in nonmagnetic
materials avoiding injection from a ferromagnet. For practical
applications, materials with a large spin Hall angle (SHA), the
efficiency of charge to spin current conversion, are desirable.
The first measurement of a giant SHE was reported for Au
with a SHA of 0.11.3 Recently, a giant SHA of −0.12 to
−0.15 was measured in highly resistive β-Ta,4 in accordance
with a qualitative prediction based on a tight-binding model
for bcc Ta.5 Comparably large SHA’s were predicted for
Au(C) (Ref. 6) and for Cu(Bi) (Ref. 7) dilute alloys from
first-principles calculations. For thin films of Cu(Bi) alloys the
giant SHE was recently confirmed experimentally.8 However,
the sign of the measured spin Hall angle (−0.24) is opposite
to the ab initio result (0.08), although in both studies skew
scattering at substitutional Bi impurities is assumed to be the
origin of the considered effect.

In this paper we provide an analysis of theoretical and
experimental results and conclude that the sign of the SHE
measured in thin-film Cu(Bi) alloys cannot be explained by
the conventional skew scattering at substitutional Bi impurities
in Cu bulk. Our study is based on first-principles calculations
using the semiclassical Boltzmann equation6 and the quantum-
mechanical Kubo-Středa formula.9 In addition, we present
a generalized version of the resonant scattering model used
in Ref. 8. We demonstrate that this model applied to the
considered phenomenon provides good agreement with the
ab initio calculations.

To exclude any possible confusions from the outset, first of
all we consider the definition of the SHA used in our work and
its relation to other approaches.

II. DEFINITION OF THE SPIN HALL ANGLE

The sign of the SHA is a subtle point since different sign
conventions for the spin Hall conductivity (SHC) are used in

the literature. This complicates a comparison between various
approaches. One definition uses the SHC in units of the charge
conductivity with the corresponding prefactor of e2 as in
Refs. 6 and 7 as well as in Refs. 10 and 11. Its advantage
is the coherent treatment of spin and charge conductivities
providing the dimensionless spin Hall angle as their ratio. In
addition, for materials like copper with spin expectation values
of the Bloch states close to 1 (in units of h̄/2),12 the two-current
model can be employed. Within this model, the charge and spin
Hall current densities are given by jx = j+

x + j−
x = σxxEx =

(σ+
xx + σ−

xx)Ex and j s
y = j+

y − j−
y = σ s

yxEx = (σ+
yx − σ−

yx)Ex ,
respectively. Here “+” and “−” denote the two spin channels
contributing to the charge conductivity σxx and the spin Hall
conductivity σ s

yx as linear-response functions to an applied
electric field E = (Ex,0,0). Although this appears natural
within the semiclassical theory,6,7,10,11 the most common
definition is related to the Kubo theory.13–15 Here, the SHC
has the prefactor of (−e)(h̄/2) replacing the electron charge
(−e) by the spin units h̄/2. Such a definition provides opposite
sign in comparison to the first one. Finally, one can use the
SHC expressed in units of the charge conductivity but keeping
the sign from the common definition of the Kubo formula.13–15

This was done in Ref. 9 exploiting the Kubo-Středa formula.
Throughout this paper the SHC, denoted as σ s

H, will refer to
σ s

yx of Refs. 6 and 7, σ s
xy of Ref. 9, and 2e

h̄
σ s

xy of Refs. 13–15.
Taking into account that for the systems with both time and
space inversion symmetry the relation σ s

xy = −σ s
yx is valid,

this convention provides a consistent comparison of different
approaches. Clearly, the sign of the SHC determines the sign of
the spin Hall angle α = σ s

H/σxx used to quantify the SHE. This
quantity is perfectly suited for the skew-scattering mechanism
where α is independent of the impurity concentration.6,9

III. COMPARISON TO EXPERIMENTAL DATA

After these introductory comments, let us compare experi-
mental and theoretical results. A negative value of the SHA was
measured for Cu(Bi) alloys, while a positive sign of the SHE
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was reported for the Cu(Ir) alloy and for pure Pt (see Fig. 2 of
Ref. 8). It is commonly assumed that the SHE in Pt is related
to the intrinsic mechanism, since reproducible experimental
results are in good agreement with theoretical predictions.9,16

These ab initio calculations confirm in particular the sign
of σ s

H. Moreover, the extrinsic contribution was shown to be
small for this material.9,17 An agreement between experiment
and theory is also obtained for the Cu(Ir) alloy. Considering
the skew-scattering mechanism, we obtain α = 0.035 and
α = 0.029 from the Boltzmann equation and the Kubo-Středa
formula, respectively, while the experimental value is 0.023.8

For this alloy, both the charge and spin resistivities show almost
perfect linear dependence on the impurity concentration up
to 12 at. %.8,18 This indicates the dominance of the skew-
scattering mechanism for the SHE in Cu(Ir). By contrast, for
the Cu(Bi) alloy the experimental results deviate from the
linear dependence above 0.5 at. % impurity concentration.8

To handle this problem, lower concentrations were chosen for
the measurement. As a result, a negative SHA of −0.24 was
measured in contradiction to first-principles calculations.7 To
clarify this issue, we perform a detailed analysis of existing as
well as new ab initio results in comparison to the experiment.
Furthermore, we derive a generalized phase-shift model as
an extension of the resonant scattering model of Ref. 8 and
simulate the scattering conditions needed to reproduce the
experimental data.

IV. GENERALIZED RELATIVISTIC PHASE-SHIFT
MODEL FOR THE SPIN HALL EFFECT

The semiclassical approach in spherical band approxima-
tion provides the following expression for the conductivity
tensor of a crystal:

σ̂ = e2

V

∑
k

δ(Ek − EF )vk ◦ �k = e2mekF

h̄2(2π )3

∫
d�k vk ◦ �k,

(1)

evaluated with

Ek = h̄2k2

2me

,
1

V

∑
k

δ(Ek − EF ) → mekF

h̄2(2π )3

∫
d�k. (2)

Here V is the system volume and
∫

d�k refers to an integration
over the angular part of the crystal momentum k. The mean
free path in Eq. (1) is given by the Boltzmann equation19

�k = τk(vk +
∑

k′
Pk←k′�k′), (3)

where the momentum relaxation time τk is defined as

1

τk
=

∑
k′

Pk′←k = 2π

h̄
ciN

∑
k′

|Tk′←k|2δ(Ek − Ek′) (4)

and vk = h̄k/me is the group velocity. The microscopic
transition probability Pk′←k describes the rate of scattering
from an initial state k into a final state k′. This quantity
is defined by the corresponding transition matrix Tk′←k and
scales with the impurity concentration ci and the total number
of atoms N in the system.19 This scaling holds for the
dilute limit of noninteracting scatterers valid for impurity
concentrations less than a few at. %.

TABLE I. The Clebsch-Gordan coefficients from Ref. 20.

j ms = −1/2 ms = 1/2

l − 1/2
√

l+m+1/2
2l+1 −

√
l−m+1/2

2l+1

l + 1/2
√

l−m+1/2
2l+1

√
l+m+1/2

2l+1

The derivation presented below is based on a relativistic
scattering theory within the spherical band approximation, as
considered in Ref. 20. Using Eq. (11.72) of this book, the
amplitudes for the spin-conserving and spin-flip scattering of
an initial state k, chosen from the relativistic “spin-up” (“+”)
channel, into a final state k′ can be obtained as21

f +←+
k′←k = 4π

kF

∑
j

+j∑
mj =−j

C

(
l
1

2
j ; mj − 1

2
,
1

2

)
eiδj sin δj

×C

(
l
1

2
j ; mj − 1

2
,
1

2

) (
Y

mj −1/2
l (k̂)

)∗
Y

mj −1/2
l (k̂′)

(5)

and

f −←+
k′←k = 4π

kF

∑
j

+j∑
mj =−j

C

(
l
1

2
j ; mj − 1

2
,
1

2

)
eiδj sin δj

×C

(
l
1

2
j ; mj + 1

2
,−1

2

)(
Y

mj −1/2
l (k̂)

)∗
Y

mj +1/2
l (k̂′),

(6)

respectively. Here δj is the phase shift related to the relativistic
quantum number j = l ± 1/2, which corresponds to the spin-
orbit splitting of levels with the orbital quantum number l. The
expansion into the spherical harmonics Ym

l is performed via
the Clebsch-Gordan coefficients C(l 1

2j ; m − ms,ms) given by
Table I.

The scattering amplitude fk′←k is related to the correspond-
ing transition matrix22

Tk′←k = −2πh̄2

meV
fk′←k. (7)

Then, for the spin-conserving and spin-flip scattering we
obtain

T +←+
k′←k = − 8π2h̄2

mekF V

∑
lm

(
Ym

l (k̂)
)∗

Ym
l (k̂′)

×
[(

l + m + 1

2l + 1

)
eiδl+1/2 sin δl+1/2

+
(

l − m

2l + 1

)
eiδl−1/2 sin δl−1/2

]
(8)

and

T −←+
k′←k = − 8π2h̄2

mekF V

∑
lm

(
Ym

l (k̂)
)∗

Ym+1
l (k̂′)

×
√

(l − m)(l + m + 1)

2l + 1

× [eiδl+1/2 sin δl+1/2 − eiδl−1/2 sin δl−1/2], (9)

respectively.
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Following Eqs. (2) and (4), the corresponding relaxation
time can be written as

1

τ+
k

= 1

τ+←+
k

+ 1

τ−←+
k

= ciNmekF V

h̄3(2π )2

∫
d�k′ (|T +←+

k′←k |2 + |T −←+
k′←k |2). (10)

Similar to Ref. 11, we will use the isotropic relaxation
time approximation τk ≈ τ0 = const further on. Within this
approximation, we assume τ0 = τk0 , where k0 = (0; 0; kF ).

Taking into account that Ym
l (ẑ) =

√
2l+1
4π

δm,0 and using
Eqs. (8) and (9) for the spin-conserving and spin-flip part
of the isotropic relaxation time we obtain

1

τ+←+
0

= 4πh̄ci

mekF V0

∑
l

{
(l + 1)2

2l + 1
sin2 δl+1/2

+ l2

2l + 1
sin2 δl−1/2

+ 2l(l + 1)

2l + 1
cos (δl+1/2 − δl−1/2)

× sin δl+1/2 sin δl−1/2

}
(11)

and
1

τ−←+
0

= 4πh̄ci

mekF V0

∑
l

l(l + 1)

2l + 1
{sin2 δl+1/2 + sin2 δl−1/2

− 2 cos (δl+1/2 − δl−1/2) sin δl+1/2 sin δl−1/2}, (12)

respectively. Their sum gives us

1

τ0
= 4πh̄ci

mekF V0

∑
l

[(l + 1) sin2 δl+1/2 + l sin2 δl−1/2], (13)

where V0 = V/N is the unit-cell volume. Here we have used
the relation τ0 = τ+

0 = τ−
0 , which is valid due to the time

inversion symmetry of the considered systems.

Alternatively, one could use the relation between the relax-
ation time and the scattering cross section σcs = V0/vF ciτ0.23

Together with the well-known expression for the relativistic
scattering cross section [see, for instance, Eq. (11.74) of
Ref. 20]

σcs = 4π

k2
F

∑
l

[(l + 1) sin2 δl+1/2 + l sin2 δl−1/2], (14)

this easily provides the expression for the relaxation time given
by Eq. (13).

With respect to the Hall conductivity caused by the
skew-scattering mechanism, the first term on the right-hand
side of Eq. (3) is unimportant since only the scattering-
in term (vertex corrections) contributes to this quantity.6,9

Moreover, only the antisymmetric part P
antisym
k←k′ = (Pk←k′ −

Pk′←k)/2 of the microscopic transition probability provides
a nonvanishing contribution.10,11 In addition, we will use
the approximation �k′ → τk′vk′ for the scattering-in term
in Eq. (3), similar to Ref. 11. Then, neglecting spin-flip
transitions, the Hall component of the conductivity tensor σ̂+ is
given by

σ+
yx = ciNV e2k2

F τ 2
0

h̄3(2π )5

∫
d�k

∫
d�k′ kyk

′
x |T +←+

k←k′ |2antisym (15)

with |T +←+
k←k′ |2antisym = (|T +←+

k←k′ |2 − |T +←+
k′←k |2)/2.

Let us rewrite Eq. (8) in the following form:

T +←+
k′←k = − 8π2h̄2

mekF V

∑
lm

(Ym
l (k̂))∗Ym

l (k̂′)
2l + 1

×{m[eiδl+1/2 sin δl+1/2 − eiδl−1/2 sin δl−1/2]

+ (l + 1)eiδl+1/2 sin δl+1/2 + leiδl−1/2 sin δl−1/2}. (16)

As was already pointed out in Ref. 11, the term∑
m m(Ym

l (k̂))∗Ym
l (k̂′) is antisymmetric with respect to ex-

change of k and k′, while
∑

m(Ym
l (k̂))∗Ym

l (k̂′) is symmetric.
Consequently, one can show that

|T +←+
k′←k |2antisym = (|T +←+

k′←k |2 − |T +←+
k←k′ |2)/2 = 128π4h̄4

m2
ek

2
F V 2

i
∑
lm

∑
l′m′

m
Ym

l (k̂)
(
Ym

l (k̂′)
)∗(

Ym′
l′ (k̂)

)∗
Ym′

l′ (k̂′)
2l + 1

fll′ , (17)

where

fll′ = {(l′ + 1) sin (δl′+1/2 − δl+1/2) sin δl+1/2 sin δl′+1/2 + l′ sin (δl′−1/2 − δl+1/2) sin δl+1/2 sin δl′−1/2

− (l′ + 1) sin (δl′+1/2 − δl−1/2) sin δl−1/2 sin δl′+1/2 − l′ sin (δl′−1/2 − δl−1/2) sin δl−1/2 sin δl′−1/2}/(2l′ + 1). (18)

To derive the Hall component of the conductivity tensor σ̂+, one can interchange k and k′ in Eq. (15) and use Eq. (17). With
this procedure we obtain

σ+
yx = ciNV e2k2

F τ 2
0

h̄3(2π )5

∫
d�k′

∫
d�k k′

ykx |T +←+
k′←k |2antisym = e2h̄k2

F ci

πm2
eV0

τ 2
0

∑
lm

∑
l′m′

mfll′

2l + 1

{
δl′,l+1

[
δm′,m−1

(l − m + 1)(l − m + 2)

(2l + 1)(2l + 3)

− δm′,m+1
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)

]
+ δl′,l−1

[
δm′,m−1

(l + m)(l + m − 1)

(2l − 1)(2l + 1)
− δm′,m+1

(l − m)(l − m − 1)

(2l − 1)(2l + 1)

]}
. (19)

Here we have used the relations

kx =
kF

√
2π

[
Y−1

1 (k̂) − Y 1
1 (k̂)

]
√

3
, k′

y =
ikF

√
2π

[
Y−1

1 (k̂′) + Y 1
1 (k̂′)

]
√

3
(20)
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together with24

∫
Ym

l [Y−1
1 − Y 1

1 ](Ym′
l′ )∗d� = −

√
3

8π

{
δl′,l+1

[
δm′,m+1

√
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
− δm′,m−1

√
(l − m + 1)(l − m + 2)

(2l + 1)(2l + 3)

]

− δl′,l−1

[
δm′,m+1

√
(l − m)(l − m − 1)

(2l − 1)(2l + 1)
− δm′,m−1

√
(l + m)(l + m − 1)

(2l − 1)(2l + 1)

]}
(21)

and∫
Ym′

l′ [Y 1
1 + Y−1

1 ](Ym
l )∗d� = −

√
3

8π

{
δl′,l+1

[
δm′,m+1

√
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
+ δm′,m−1

√
(l − m + 1)(l − m + 2)

(2l + 1)(2l + 3)

]

− δl′,l−1

[
δm′,m+1

√
(l − m)(l − m − 1)

(2l − 1)(2l + 1)
+ δm′,m−1

√
(l + m)(l + m − 1)

(2l − 1)(2l + 1)

]}
. (22)

If we restrict our consideration to the contributions of s, p, d,
and f electrons and neglect terms with l > 3, then Eq. (19)
can be reduced to the form

σ+
yx = 4e2h̄k2

F ci

πm2
eV0

τ 2
0

{
1

9
(f10 − f12) + 1

5
(f21 − f23) + 2

7
f32

}
,

(23)

where f10, . . . ,f32 are defined by Eq. (18).
According to Eqs. (1) and (2), the longitudinal conductivity

within the isotropic relaxation time approximation is given by

σ+
xx = e2mekF τ0

h̄2(2π )3

∫
d�k vx

kvx
k = e2kF τ0

me(2π )3

∫
d�k k2

x, (24)

neglecting the scattering-in term in Eq. (3). Taking into account
Eq. (20), we have∫

d�k k2
x = 4πk2

F

3

∫
d�k[Y 1

1 (k)]∗Y 1
1 (k) = 4πk2

F

3
, (25)

that together with Eq. (24) provides us the longitudinal
conductivity

σ+
xx = e2k3

F

6π2me

τ0 (26)

in terms of the momentum relaxation time given by Eq. (13).
The presence of both time and space inversion symme-

try provides the following relations between the two spin
channels: σ+

xx = σ−
xx and σ+

yx = −σ−
yx . Thus, within the two-

current model discussed in Sec. II, the spin Hall angle can be
written as

α = (σ+
yx − σ−

yx)/(σ+
xx + σ−

xx) = σ+
yx/σ

+
xx. (27)

For comparison with Eq. (2) of Ref. 8, we skip in Eqs. (13)
and (23) all terms with l > 1, assuming they are negligible for
the scattering at Bi atoms. Then, using Eq. (27), we obtain for
the SHA

α = 2 sin δs
1/2

[sin δ
p
1/2

sin (δp
1/2

− δs
1/2

) − sin δ
p
3/2

sin (δp
3/2

− δs
1/2

)]

3(sin2 δs
1/2

+ sin2 δ
p
1/2

+ 2 sin2 δ
p
3/2

)
,

(28)

where δs
1/2

is the phase shift related to s electrons (l = 0),
while δ

p
1/2

and δ
p
3/2

are the phase shifts of p electrons (l = 1)
split by spin-orbit coupling (SOC). Equation (28) is equivalent
to Eq. (2) of Ref. 8 but with opposite sign.

The origin of this discrepancy arises from the scattering-
in term of the Boltzmann equation. In our case it is used
according to Kohn and Luttinger.25 By contrast, Eq. (2) of
Ref. 8 was based on an erroneous scattering-in term used
for the Boltzmann equation that caused opposite sign in the
SHA.26

V. RESULTS AND DISCUSSION

The phase shifts, used for the calculation of the SHA by
Eq. (28), were obtained according to Eq. (11.61) of Ref. 20
by means of the relativistic Korringa-Kohn-Rostoker Green’s-
function method.12 Within the parent lattice geometry they are
the following: δs

1/2
= 0.94, δ

p
1/2

= 1.32, and δ
p
3/2

= 0.79.
Up to now structural relaxation next to the impurity atom

was neglected in the first-principles description of the SHE.6,7,9

In order to clarify the influence of this effect on the considered
phenomenon, here we will also present the SHA calculated
taking into account both the charge and lattice relaxation
around the impurity.

The relaxed geometry for Bi and Ir impurities in a Cu host
is presented in Table II. This was obtained by means of Vienna
Ab initio Simulation Package (VASP).27 The electron-ion
interactions are represented by the projector-augmented wave
(PAW) pseudopotential28 and the electronic wave functions
expanded as plane waves with the cutoff energy of 450 eV.
The corresponding system was simulated with a 108-atom su-
percell and the relaxation was performed until the forces were
less than 5 × 10−3 eV/Å. The obtained structural relaxation
for the Bi impurity is much stronger in comparison to the
Ir impurity. Therefore, one could assume that the discrepancy
between theory and experiment for the Cu(Bi) alloy, in contrast
to a good agreement obtained for the Cu(Ir) alloy, is caused by
this effect. To perform the transport calculations for the Cu(Bi)
alloy, we neglect the structural relaxation for the next-nearest
neighbors and take the averaged (over the row) value of 5.6%
for the nearest neighbors. The phase shifts corresponding to
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TABLE II. The relative extension (in %) of the distances from
Bi and Ir impurities to the nearest neighbors (NN) and the next-
nearest neighbors (NNN) in a Cu host, as obtained within both
the local-density approximation (LDA) and the generalized gradient
approximation (GGA) for the exchange-correlation potential (Vxc).
The experimental lattice constant of Cu is aexp. = 3.6149 Å, while
the theoretical values (atheory) are 3.5228 and 3.6394 Å for LDA and
GGA, respectively.

Vxc LDA GGA

Lattice constant atheory aexpt. atheory aexpt.

NN to Bi 5.40% 6.07% 5.52% 5.33%
NNN to Bi 0.48% 0.61% 0.47% 0.44%
NN to Ir 1.44% 0.94% 0.97% 1.14%
NNN to Ir 0.20% 0.30% 0.27% 0.25%

this geometry were obtained as δs
1/2

= 0.95, δ
p
1/2

= 1.39, and
δ

p
3/2

= 0.89.
In Table III we present the results for the skew-scattering

contribution to the SHA of the Cu(Bi) alloy obtained from
first-principles calculations. They are shown in comparison to
Eq. (28) based on the spherical band approximation. The latter
one provides good agreement with the Boltzmann equation.
Including contributions of d and f electrons in Eqs. (23)
and (13) results in almost the same value of 0.095. Thus,
the assumption of Ref. 8, that the dominant scattering process
in the Cu(Bi) alloy is related to p electrons, is confirmed. This
is in agreement with Ref. 7, where it was highlighted that the
spin-orbit driven scattering at Bi impurities is particularly high
for p electrons. In addition, Table III demonstrates reasonable
agreement between the results obtained by the Boltzmann
equation and the Kubo-Středa formula. Taking into account the
structural relaxation around the impurity leads to a reduction
of the SHA by ∼20%, however this still cannot describe the
experimental data.

Other options for an explanation of the discrepancy be-
tween theory and experiment are the intrinsic and side-jump
mechanisms. For that reason we performed corresponding
calculations for Cu(Bi) alloys with different impurity con-
centrations using the Kubo-Středa formula.9 Figure 1 shows
the results for the SHA including the intrinsic, side-jump, and
skew-scattering contribution. The sign of this quantity remains
positive for the whole range of the impurity concentrations
analyzed in the experiment.8 Altogether this demonstrates that
the spin-orbit driven scattering at substitutional Bi impurities

TABLE III. The skew-scattering contribution to the spin Hall
angle α for the dilute Cu(Bi) alloy calculated by means of the
semiclassical and quantum-mechanical ab initio approaches as well as
within the spherical band approximation. Here, the values in brackets
are obtained including structural relaxation around the impurity atom.

Theory SHA α

Phase-shift model, Eq. (28) 0.096 (0.089)
Boltzmann equation 0.081 (0.063)
Kubo-Středa formula 0.127
Experiment (Ref. 8) −0.24

0.120
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0.130

0.135

S
H

A
α

0 1 2 3 4 5 6 7 8 9 10

Bi concentration (at. %)
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GGA

FIG. 1. (Color online) The spin Hall angle for the Cu(Bi) alloy
with different impurity concentrations obtained from the Kubo-Středa
formula using both the local-density approximation (LDA) and
the generalized gradient approximation (GGA) for the exchange-
correlation potential.

randomly distributed in bulk Cu cannot explain the sign of the
measured SHA.

Thus, state-of-the-art ab initio calculations of the SHA
cannot explain the existing experimental data for the Cu(Bi)
alloy. However, the considered phase-shift model allows us
to simulate the dependence of the SHA on the scattering
properties by varying the corresponding phase shifts. Figure 2
shows α as a function of the phase shifts involved in Eq. (28).
Here, we fix the difference between the two p phase
shifts (δp

1/2
− δ

p
3/2

= 0.50) as obtained from our first-principles
calculations for the relaxed geometry and vary δs

1/2
and

δp = 1
3 (δp

1/2
+ 2δ

p
3/2

). The SHA related to the ab initio phase
shifts is situated in a stable positive region. However, certain
combinations of the phase shifts can deliver the experimental
result (α = −0.24). As shown in the Supplemental Material,29

a variation of the spin-orbit splitting δ
p
1/2

− δ
p
3/2

which can be
caused for instance by electron correlation effects, as proposed

FIG. 2. (Color online) The dependence of the spin Hall angle,
given by Eq. (28), on δs ≡ δs

1/2 and δp ≡ 1
3 (δp

1/2 + 2δ
p
3/2) is shown for

the relaxed geometry together with the corresponding value of α from
Table III.
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in Ref. 30, would not change the sign of the SHA. Therefore,
only a significant modification of the potential scattering
properties could provide agreement between theory and
experiment.

With respect to this finding, impurity cluster formation
becomes increasingly important and is not considered in
theory yet. Experimentally it was shown8 that at impurity
concentrations above 0.5 at. % Bi atoms start to segregate at
the interface. For that reason the analysis to extract the skew-
scattering contribution was restricted to lower concentrations.
In this regime it was assumed that Bi impurities are randomly
distributed without short-range ordering. This implies a linear
relation between the impurity concentration and the resistivity
of the studied films, which was observed for lower concentra-
tions. However, the formation of extremely small clusters such
as dimers or trimers down to lowest impurity concentrations
could not be excluded and its impact on the SHE is, to date, not
explored. For a description of that case the present theoretical
approaches need to be extended. In addition, the existence of
rough interfaces and grain boundaries in the films can cause
extra scattering or can force the impurities to accumulate there,
which would change the scattering properties as well. Indeed,
recent studies31–33 show such accumulations of Bi impurities
at Cu grain boundaries.

VI. CONCLUSION

We performed a detailed analysis of the giant SHE in dilute
Cu(Bi) alloys. Theory and experiment deliver a giant spin
Hall angle but disagree with respect to sign. We demonstrated

the agreement between different state-of-the-art ab initio
calculations with respect to the skew-scattering contribution
to the SHE from single Bi impurities in copper. The results
of a generalized phase-shift model support the first-principles
findings for both the magnitude and sign of the SHA, taking
into account charge and lattice relaxation around the impurity.
Furthermore, we have shown that the discrepancy can neither
be explained by the side-jump contribution nor the intrinsic
mechanism. Based on the generalized relativistic phase-shift
model, we simulated the experimental data and found that only
a strong modification of potential scattering can reproduce the
measured SHA. This points to the existence of other scattering
centers in the Cu(Bi) thin films than just randomly distributed
substitutional Bi impurities. Possible candidates are few-atom
clusters, interface roughness, and grain boundaries decorated
with Bi atoms. Considerable changes of the scattering prop-
erties are expected for these cases in comparison to single
substitutional Bi impurities. The corresponding verification
by additional ab inito calculations and further experimental
investigations is necessary.
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